On zero-sum subsequences of restricted size II
نویسنده
چکیده
Let G be a 0nite abelian group of exponent m, and k a positive integer. Let skm(G) be the smallest integer t such that every sequence of t elements in G contains a zero-sum subsequence of length km. In this paper, we determine skm(G) for some special groups G and study the number of zero-sum subsequences of length m. c © 2003 Elsevier B.V. All rights reserved.
منابع مشابه
On the Number of Zero-sum Subsequences of Restricted Size
Let n = 2λm ≥ 526 with m ∈ {2, 3, 5, 7, 11}, and let S be a sequence of elements in Cn⊕Cn with |S| = n2 +2n−2. Let N 0 (S) denote the number of the subsequences with length n2(=|G|) and with sum zero. Among other results, we prove that either N 0 (S) = 1 or N |G| 0 (S) ≥ n2 + 1.
متن کاملOn the Number of m-term Zero-Sum Subsequences∗
A sequence S of terms from an abelian group is zero-sum if the sum of the terms of S is zero. In 1961 Erdős, Ginzburg and Ziv proved that any sequence of 2m− 1 terms from an abelian group of order m contains an m-term zero-sum subsequence [10]. This sparked a flurry of generalizations, variations and extensions [1] [3] [7] [8] [11] [13] [14] [15] [16] [17] [18] [22] [26] [27] [28] [37]. Since a...
متن کاملSubsequence Sums Of Zero-Sum Free Sequences II
Let G be a finite abelian group, and let S be a sequence of elements in G. Let f(S) denote the number of elements in G which can be expressed as the sum over a nonempty subsequence of S. In this paper, we determine all the sequences S that contains no zero-sum subsequences and f(S) ≤ 2|S| − 1. MSC: Primary 11B75; Secondary 11B50.
متن کاملOn Short Zero-sum Subsequences Ii
Let G be a finite abelian group of exponent n. In this paper we investigate the structure of the maximal (in length) sequences over G that contain no zero-sum subsequence of length [at most] n. Among others, we obtain a result on the multiplicities of elements in these sequences, which support well-known conjectures on the structure of these sequences. Moreover, we investigate the related invar...
متن کاملSequences in abelian groups G of odd order without zero-sum subsequences of length exp ( G )
We present a new construction for sequences in the finite abelian group C n without zero-sum subsequences of length n, for odd n. This construction improves the maximal known cardinality of such sequences for r > 4 and leads to simpler examples for r > 2. Moreover we explore a link to ternary affine caps and prove that the size of the second largest complete caps in AG(5, 3) is 42.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 271 شماره
صفحات -
تاریخ انتشار 2001